Hankel matrices are special types of matrices that are symmetric and banded. They are named after the German mathematician Hermann Hankel, who first studied them in the 19th century.
A Hankel matrix is defined as a square matrix whose entries are constant along each anti-diagonal, i.e., the entries on the i+jth diagonal are constant for each i and j. For example, a 4x4 Hankel matrix would look like this:
2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8
Some properties of Hankel matrices include:
Hankel matrices have applications in various areas of mathematics, including calculus of variations, differential equations, and signal processing. They are also useful in numerical analysis, where they can be used to investigate the convergence properties of certain algorithms.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page